Sorting of Early and Late Flagellar Subunits After Docking at the Membrane ATPase of the Type III Export Pathway

نویسندگان

  • Graham P. Stafford
  • Lewis D.B. Evans
  • Rita Krumscheid
  • Paraminder Dhillon
  • Gillian M. Fraser
  • Colin Hughes
چکیده

The bacterial flagellum assembles in a strict order, with structural subunits delivered to the growing flagellum by a type III export pathway. Early rod-and-hook subunits are exported before completion of the hook, at which point a subunit-specificity switch allows export of late filament subunits. This implies that in bacteria with multiple flagella at different stages of assembly, each export pathway can discriminate and sort unchaperoned early and chaperoned late subunits. To establish whether subunit sorting is distinct from subunit transition from the cytosol to the membrane, in particular docking at the membrane-associated FliI ATPase, the pathway was manipulated in vivo. When ATP hydrolysis by the FliI ATPase was disabled and when the pathway was locked into an early export state, both unchaperoned early and chaperoned late subunits stalled and accumulated at the inner membrane. Furthermore, a chaperone that attenuates late subunit export by stalling when docked at the wild-type ATPase also stalled at the ATPase in an early-locked pathway and inhibited export of early subunits in both native and early-locked pathways. These data indicate that the pathways for early and late subunits converge at the FliI ATPase, independent of ATP hydrolysis, before a distinct, separable sorting step. To ascertain the likely signals for sorting, the export of recombinant subunits was assayed. Late filament subunits unable to bind their chaperones were still sorted accurately, but chaperoned late subunits were directed through an early-locked pathway when fused to early subunit N-terminal export signal regions. Furthermore, while an early subunit signal directed export of a heterologous type III export substrate through both native and early-locked pathways, a late subunit signal only directed export via native pathways. These data suggest that subunits are distinguished not by late chaperones but by N-terminal export signals of the subunits themselves.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Selective binding of virulence type III export chaperones by FliJ escort orthologues InvI and YscO

Bacteria secrete flagella subunits and deliver virulence effectors via type III export systems. During flagellar filament assembly, a chaperone escort mechanism has been proposed to enhance the export of early, minor flagellar filament components by selectively binding and cycling their chaperones. Here we identify virulence orthologues of the flagellar chaperone escort FliJ and show that the o...

متن کامل

An escort mechanism for cycling of export chaperones during flagellum assembly.

Assembly of the bacterial flagellar filament requires a type III export pathway for ordered delivery of structural subunits from the cytosol to the cell surface. This is facilitated by transient interaction with chaperones that protect subunits and pilot them to dock at the membrane export ATPase complex. We reveal that the essential export protein FliJ has a novel chaperone escort function in ...

متن کامل

The ATPase FliI can interact with the type III flagellar protein export apparatus in the absence of its regulator, FliH.

Salmonella FliI is the ATPase that drives flagellar protein export. It normally exists as a complex together with the regulatory protein FliH. A fliH null mutant was slightly motile, with overproduction of FliI resulting in substantial improvement of its motility. Mutations in the cytoplasmic domains of FlhA and FlhB, which are integral membrane components of the type III flagellar export appar...

متن کامل

The Bacterial Flagellar Type III Export Gate Complex Is a Dual Fuel Engine That Can Use Both H+ and Na+ for Flagellar Protein Export

The bacterial flagellar type III export apparatus utilizes ATP and proton motive force (PMF) to transport flagellar proteins to the distal end of the growing flagellar structure for self-assembly. The transmembrane export gate complex is a H+-protein antiporter, of which activity is greatly augmented by an associated cytoplasmic ATPase complex. Here, we report that the export gate complex can u...

متن کامل

Role of the C-terminal cytoplasmic domain of FlhA in bacterial flagellar type III protein export.

For construction of the bacterial flagellum, many of the flagellar proteins are exported into the central channel of the flagellar structure by the flagellar type III protein export apparatus. FlhA and FlhB, which are integral membrane proteins of the export apparatus, form a docking platform for the soluble components of the export apparatus, FliH, FliI, and FliJ. The C-terminal cytoplasmic do...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 374  شماره 

صفحات  -

تاریخ انتشار 2007